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[1] An accurate representation of the spatial distribution of stable hydrogen and oxygen
isotopes in modern precipitation is required for many hydrological, paleoclimate, and
ecological applications. No standardized method for achieving such a representation exists,
and potential errors associated with previously employed methods are not understood.
Using resampling, we test the accuracy of interpolated dD and d18O estimates made using
four methods. Prediction error for all methods is strongly related to number of data and
will likely decline with the addition of new data. The best method lowers estimation error
by 10–15% relative to others tested and gives an average error, using all available data,
�2.5% of the global range. We present and interpret global maps of interpolated dD, d18O,
and deuterium excess in precipitation and the 95% confidence intervals for these values
created using the optimal method. These depict global and regional patterns, make evident
the robustness of interpolated isotopic patterns, and highlight target areas for future
precipitation sampling. INDEX TERMS: 0330 Atmospheric Composition and Structure: Geochemical

cycles; 1040 Geochemistry: Isotopic composition/chemistry; 1655 Global Change: Water cycles (1836);
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1. Introduction

[2] The stable oxygen and hydrogen isotope composition
of precipitation exhibits spatial variation across Earth’s
surface. Atmospheric moisture is derived primarily from
low-latitude oceanic regions, where its initial composition
is fixed by isotope effects related to evaporation and
boundary layer diffusion between the ocean and atmosphere
[e.g., Boyle, 1997]. The dD or d18O of precipitation is
high in regions where vapor is sourced to the atmosphere,
and declines away from source regions in response to the
progressive cooling of air masses and equilibrium fraction-
ation between vapor and precipitation during rainout
[Dansgaard, 1964]. Cooling and rainout occur by any of
a number of meteorological processes, including meridional
transport, transport from oceanic to continental regions,
orographic lifting, and convective processes [Rozanski et
al., 1993]. Additional modification of vapor isotope values
can result from the contribution of evaporated or transpired
meteoric water to atmospheric vapor [Gat et al., 1994;
Pierrehumbert, 1999]. Spatial variability in the dD or d18O
of precipitation reflects the combination of source-region
labeling, rainout effects, and recycling effects that affect air
masses bringing vapor to different geographic regions.
[3] Meteoric water isotopic compositions, measured

directly or preserved within minerals or plant or animal
tissue, are commonly used in studies of continental climate
and hydrology. These studies use dD or d18O in one of two

ways: as a tracer or to monitor a process. Tracer applications
rely directly on the isotopic labeling of atmospheric vapor
and/or the resultant spatial variation in meteoric water
isotopes to discern the source and mixing of surface or
groundwaters [e.g., Lee et al., 1999; Kendall and Coplen,
2001], to discern animal migration patterns [e.g., Hobson
and Wassenaar, 1997], or to infer shifts in the source of
precipitation delivered to a study site over time [Amundson
et al., 1996; Genty et al., 2002; Jahren and Sternberg,
2002]. Process applications focus on factors that control
water isotope evolution in atmospheric vapor or the frac-
tionation between meteoric water and oxygen-bearing min-
eral phases. Dansgaard [1964] noted the modern spatial
relation between local mean annual temperature and the dD
and d18O of precipitation, and this relation has been applied
in the interpretation of isotopic archive records [e.g., Hays
and Grossman, 1991; Dansgaard et al., 1993]. Recent work
has focused on variables other than local temperature that
might control the extent of rainout as vapor is delivered to a
study site [Edwards et al., 1996; Boyle, 1997; Chamberlain
et al., 1999; Chamberlain and Poage, 2000; Poage et al.,
2000; Hammarlund et al., 2002] or modify the isotopic
composition of meteoric water [e.g., Seltzer et al., 2000;
Wolfe et al., 2001]. The magnitude of d18O fractionation
during the precipitation of many minerals is temperature-
dependant, and, if the d18O of environmental water can be
estimated, can be used as a proxy for environmental
temperature [e.g., Emiliani, 1972; Lauritzen, 1996].
[4] A common feature of these applications is that they

require knowledge of the isotopic composition of modern
meteoric precipitation at one or more locations. The type of
information required depends on the application, but in
many cases it is desirable to know the integrated isotopic
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composition of modern precipitation delivered in an
‘‘average’’ year (the long-term, mean annual dD or d18O).
In actuality, records of the stable isotope composition of
precipitation spanning one or more years are available for
only a few hundred locations worldwide (Figure 1). For
some specific applications, it is possible to estimate the
mean isotopic composition of modern local precipitation
through one or more years of direct measurement. Although
desirable, direct measurement is time consuming and, for
regional or global scale studies, logistically unfeasible. In
addition, short-term climatic variation may bias estimates of
long-term annual precipitation dD or d18O derived from
only one or two years of data. Together, these concerns
highlight the need for methods that allow the point estima-
tion of dD and d18O from existing data sets.
[5] Spatial interpolation provides a method for estimating

the isotopic composition of precipitation where data are not
available by generating a smoothed trend surface that
captures the geographic variability of data. In addition to
providing point estimates, examination of the deviation of
individual data values from the trend surface can highlight
values that are unusual in their geographic context. Also, the
representation of discrete data by a continuous trend surface
can allow comparison between data of different spatial scale
or resolution. For instance, a robust method for the spatial
interpolation of dD and d18O values of precipitation might
improve comparisons between monitoring station measure-
ments and the output of isotope tracer-equipped general
circulation models, which operate on a coarse grid resolu-
tion [Jouzel et al., 2000; Mathieu et al., 2002].
[6] Most previous work requiring point estimates of the

dD or d18O of precipitation, or attempting to spatially
represent the global water isotopes in precipitation data
set, has relied on simple spatial interpolation methods
(contouring, triangulation, and inverse distance methods).

Recently, two more complex methods for interpolation of the
isotopic composition of precipitation have been applied. In
the fall of 2001 a group working with the IAEA released a
series of maps representing the oxygen and hydrogen isotope
composition of precipitation as estimated by Cressman
objective analysis [Birks et al., 2002], a spheres of influence
interpolation method developed in the 1950s for interpola-
tion of meteoric data [Cressman, 1959]. Subsequently,
Bowen and Wilkinson [2002] developed an interpolation
scheme that combines an empirical model for isotopic trends
related to latitude and altitude (through the temperature
effect) with spatial interpolation. Here we quantitatively
compare long-term, mean annual dD and d18O predictions
made using different interpolation methods. We then
develop optimal maps of the spatial distribution of oxygen
and hydrogen isotopes in precipitation and provide a spatial
representation of the confidence levels of these estimations.
Finally, we illustrate the utility of these maps by generating
and analyzing a global map of deuterium excess that
highlights significant regional D excess anomalies. Along
the way we consider several interesting features of the
existing water isotopes in precipitation data set.

2. Data

[7] The data on the deuterium and oxygen isotope com-
position of precipitation used for this study come from the
most recent release of the Global Network for Isotopes in
Precipitation (GNIP) database (http://isohis.iaea.org, 2001).
Although this database contains the most comprehensive,
global observation set for water isotopes in precipitation,
there are some new, independently generated data that have
not yet been incorporated in the GNIP data set or in our
analysis [e.g., Welker, 2000]. All isotopic compositions are
given in per mil (%) units and d notation relative to the V-

Figure 1. Location of GNIP stations for which mean annual dD or d18O data were obtained; dD and
d18O data are from 336 stations (solid circles), dD only at 4 sites (open squares), and d18O only at 12 sites
(open diamonds).
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SMOW standard, where d = (Rsample � Rstandard)/Rstandard �
1000, and R indicates the ratio D/H or 18O/16O. Raw data,
reporting the isotopic composition and amount of precipita-
tion averaged monthly, were reduced to precipitation-
amount-weighted, mean annual values using the method
described by Bowen and Wilkinson [2002]. The mean annual
dD value of precipitation is available for 340 sites; the d18O
value is available for 348 locations (Figure 1). The eleva-
tions of several stations were not available in this data set and
were estimated using the United States Geological Survey’s
GTOPO30 digital elevation model [U.S. Geological Survey,
1996], which provides 30 arc second spatial resolution.
[8] Although the GNIP data set is currently the most

complete and best available for determining the spatial
distribution of isotopes in modern precipitation, it presents
at least two important limitations for this kind of work. First,
as is evident in Figure 1, the spatial distribution of sampling
sites is widely variable, and there are large areas of some
continents (e.g., much of the United States, Africa, and
central Asia) for which no data are available. Bowen and
Wilkinson [2002] showed that although global trends
account for much of the variability in the d18O of precipita-
tion, additional variability of several per mil is present at
regional scales. Currently, all methods for the estimation of
dD and d18O values of precipitation between sampling sites
rely on weighting of nearby data to reveal this regional
variability; thus data availability limits the accuracy and
resolution of these methods in many areas. Second, the
GNIP data set represents a compilation of data collected
over almost 40 years, and data for all years is not available
for all stations. If our goal is to represent the mean modern
state of the hydrologic system, we must allow that some
erroneous patterns may arise as the result of the uneven
distribution of isotope data over time, and the existence of
both short term (interannual) variability and long term
(decadal) trends in climate during the last four decades. Each
of these factors will be taken into consideration in our
analysis.

3. Methods

3.1. Comparison of Interpolation Schemes

[9] We estimated the error of interpolated dD and d18O
estimates by subsampling the GNIP data set (jackknifing
[e.g., Tichelaar and Ruff, 1989]) and using the remaining
observations to predict the isotopic composition of precip-
itation at measurement sites that were excluded from the
subsampled data set. Jackknifes were performed for multi-
ple subsample sizes n = N � j, where N represents the total
number of available data and j was assigned values between
1 and N � 50. For j = 1, N subsamples were created where
each site was excluded from one subsample. For higher
values of j, we generated a large number of subsamples by
excluding j randomly selected data from each subsample. At
least 100 subsamples were taken at each value of j and,
where necessary, a greater number were taken to allow at
least 4,000 estimates of dD or d18O at unsampled stations.
By bootstrapping the subsample error estimates, we found
these criteria to be sufficient to generate a stable approxi-
mation of the mean magnitude of interpolation error with a
standard deviation of <0.14% for dD and <0.02% for d18O.
[10] Four interpolation schemes were evaluated. Triangu-

lation was chosen to represent simple spatial interpolation

with reference only to the nearest data stations, as has been
common in paleoclimate studies [e.g., Sharp and Cerling,
1998]. For this method, isotopic estimates were made using
the equation:

d̂x ¼

X3
i¼1

diDxi

X3
i¼1

Dxi

; ð1Þ

where d̂x is our estimate of the isotopic composition (dD or
d18O) at the location of interest, and di and Dxi represent the
isotopic composition of precipitation at the ith closest
measurement site and the distance between the location of
interest and the ith closest measurement site in arc degrees,
respectively.
[11] The second method examined was inverse distance

weighting, where estimates of the isotopic composition at a
given location were made using all available stations
according to:

d̂x ¼

Xn
i¼1

die �Dxi=b1ð Þ

Xn
i¼1

e �Dxi=b1ð Þ
; ð2Þ

where b1 (�) determines the relative weight assigned to
nearby data. This algorithm is a simple representative of a
class of spatial interpolation methods commonly used in the
generation of contour maps. For large values of b1, regional
variations in isotope compositions will be smoothed over
large geographic regions. As b1 approaches 0, variability at
small spatial scales will be highlighted where data are
present, but regions lacking data will take on the global
average value of dD or d18O.
[12] Third, using Cressman objective analysis [Cressman,

1959], we interpolated data values onto a global 2.5�
latitude � 2.5� longitude grid which was used to estimate
the isotopic composition of precipitation at excluded data
stations. An initial estimate for dD or d18O at each grid node
was calculated by equation 2 using b1 = 1.5�. Correction
factors over a series of radii of influence were then
determined in sequence and used to incrementally modify
the initial estimate. The radii used were 25, 17.5, 10, 7.5, 5
and 2.5�, roughly corresponding to the grid cell radii used to
make maps of the isotopic composition of precipitation
[Birks et al., 2002]. Correction factors were determined
from all data lying with a given radius of influence, and
were calculated according to:

Cx;k ¼

X
i

di � pi;k�1

� � r2k � D2
xi

r2k þ D2
xi

nk
: ð3Þ

In this equation Cx,k is the correction applied at node x
determined using the kth radius of influence, pi,k�1 is the
isotope value predicted at data station i by inverse distance
interpolation between the four surrounding grid values
calculated at the previous step, rk is the current radius of
influence, nk is the number of stations within the current
radius of influence, and the summation is for all stations
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within rk degrees of the location of interest. As per Birks et
al. [2002], no predictions were made for locations more
than 10� distant from the nearest data station.
[13] Finally, we examined the method proposed by

Bowen and Wilkinson [2002] (hereafter referred to as the
BW model), which treats the isotopic composition of
precipitation as the sum of temperature driven rainout
effects and regional patterns of vapor sourcing and delivery.
Temperature effects are represented by model parameters
relating the isotopic composition of precipitation to the
absolute value of station latitude (jLATj) and altitude
(ALT), according to the equation:

px ¼ a LATxj j2 þ b LATxj j þ cALTx; ð4Þ

where px is an initial estimate of d̂x, and a, b, and c are
empirical parameters. To represent the effects of regional
variation in atmospheric circulation patterns on the isotopic
composition of precipitation, we spatially interpolate the dD
and d18O variability that is not accounted for by the
temperature effects described in the equation above.
Combining this interpolation with equation (4) gives the
composite model equation:

d̂x ¼

Xn
i¼1

di � pið Þe �Dxi=b2ð Þ

Xn
i¼1

e �Dxi=b2ð Þ
þ px; ð5Þ

where b2 is a distance weighting parameter analogous to b1.
In this study, we fit the model parameters simultaneously by
nonlinear least squares, rather than using the two step
regression technique proposed by Bowen and Wilkinson
[2002]. This formulation is more mathematically rigorous in
that it assigns equal importance to the latitude and altitude
relations, it allows b2 to be fit to the data, and it ensures a
zero mean residual. The frechêt kernels are:

@d̂x
@a

¼ �wx

Xn
i¼1

LATij j2e�Dxi=b2
� �

þ LATxj j2; ð6Þ

@d̂x
@b

¼ �wx

Xn
i¼1

LATij je�Dxi=b2
� �

þ LATxj j; ð7Þ

@d̂x
@c

¼ �wx

Xn
i¼1

ALTie
�Dxi=b2

� �
þ ALTx; ð8Þ

and:

@d̂x
@b2

¼� wx

Xn
i¼1

di � pið ÞDxie
�Dxi=b2

h i
þ

Xn
i¼1

Dxie
�Dxi=b2

� �
Xn
i¼1

e�Dxi=b2

 !2

	
Xn
i¼1

di � pið Þe�Dxi=b2
h i

; ð9Þ

where:

wx ¼
1Xn

i¼1

e�Dxi=b2

: ð10Þ

These were implemented in a standard gradient method
used to correct a starting model until corrections were small.
In most cases, the model converged on a stable solution
with less than 20 iterations.

3.2. Interpolated Isotopic Composition of Precipitation

[14] Following comparison of interpolation schemes, we
used the GNIP data set and the BW model (which proved to
provide the best estimates) to generate global dD and d18O
grids. Continental grid cell elevations were taken from the
ETOPO5 global digital elevation model [U.S. National
Geophysical Data Center, 1998]. Our grid resolution was
50 � 50 for the continents and 200 � 200 over the oceans,
which were treated as cells with 0 m elevation. The reduced
spatial resolution of our maps over the oceans is justified in
that high-frequency variation in the BW model is primarily
driven by topography. Map calculations were performed
using the best-fit parameters for all stable isotope data.

3.3. Confidence of Predictions

[15] We calculated 95% confidence intervals for the dD
and d18O predictions generated by the BW method. The
N � 1 jackknife was used to estimate the variance of each
model parameter and the covariance matrix for the param-
eters [Wu, 1986]. To estimate the variance of the BW
estimate at any given grid point, we generated a large
number of synthetic parameter sets by drawing each param-
eter independently and randomly from a uniform distribu-
tion with limits determined by the empirically determined
parameter variance. For each synthetic parameter set we
calculated a dD and d18O estimate for the grid point and the
probability of that set given the joint probability distribution
of the parameters. Our 95% confidence intervals are 1.96 �
the probability-weighted mean standard deviation of the
estimates derived from the synthetic parameter sets. We
found that �5000 parameter sets were required to produce
precise confidence interval estimates. This method is com-
putationally intensive, and as a result we present confidence
intervals at 200 � 200 spatial resolution for the continents
and 1� � 1� for the oceans.

3.4. Deuterium Excess

[16] We estimated deuterium excess (d [Dansgaard,
1964]) at 200 � 200 resolution directly from our dD and
d18O grids according to:

dx ¼ d̂Dx � 8 d̂18Ox

� �
: ð11Þ

Confidence intervals (95%) were calculated from the
standard distribution of deuterium excess values, given by
the equation:

sd;x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
d̂Dx

þ 64 s2
d̂18Ox

� �r
; ð12Þ

were s2
d̂xDx

and s2
d̂x18Ox

indicate the variances of the dD and

d18O estimates, respectively, calculated above.

4. Results and Discussion

4.1. Comparison of Interpolation Schemes

[17] The value chosen for the weighting radius b1 affects
the spatial scale over which data is averaged to derive
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interpolations using the inverse distance method. By com-
paring the quality of predictions made using b1 = 1, 2 and 4�,
we determine that the optimal weighting radius for this
method is �2�; we therefore use b1 = 2� throughout the rest
of this study. The frequency distribution for estimation error
for theN� 1 d18O jackknife under each of the 4 interpolation
methods (Figure 2) is roughly symmetric, but leptokurtic
(strongly peaked). This distribution is typical of all methods
and sample sizes, and we therefore choose to use the L1
norm (average magnitude of error) rather than the L2 norm
(mean square error) to highlight differences between inter-
polation methods. The L1 norm is more sensitive to differ-
ences in the body of the probability distributions, and less so

to those in the tails, and thus provides an appropriate metric
for comparing leptokurtic distributions.
[18] We compare the 4 interpolation methods for dD

(Figure 3) and d18O (Figure 4) estimates. Comparisons
between methods at sites within 10 arc degrees of a data
station included in the jackknife subsample (Figures 3a
and 4a) allow for the evaluation of the the Cressman method
relative to the others, but bias the trend of overall prediction
error relative to n because a larger number of stations are
excluded from the comparison at low values of n. Patterns of
variation in the averagemagnitude of prediction error are very
similar for dD and d18O. For all interpolation methods,
prediction error declines approximately as a negative power

Figure 2. Frequency distributions for the estimation error at the 348 stations in the N � 1 d18O
jackknife for the (a) triangulation, (b) inverse distance, (c) Cressman, and (d) BW methods. Prediction
error equals the difference between the d18O value measured at a GNIP station and that predicted by
interpolation between all other stations. Error distributions are roughly symmetric and strongly peaked
(leptokurtic).
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function as the number of included data stations (n) increases.
At all values of n, the BW method provides more accurate
estimates relative to the other methods by approximately
1.0% for dD and 0.18% for d18O, with triangulation provid-
ing the next best estimates for most subsample sizes.
[19] Figures 3b and 4b compare the average prediction

error for all interpolation methods except the Cressman
method and all sites regardless of their proximity to sampled
data stations. As noted above, the relation between average
prediction error and the number of data stations is similar
for dD and d18O. For all values of n, the average prediction
errors for the inverse distance and triangulation methods are
similar, with triangulation producing slightly better results.
The average prediction error for the BW method is at least

0.7% dD and 0.14% d18O less than that for either triangu-
lation or inverse distance interpolation for all values of n.
Given the current coverage of the GNIP database, the
average magnitude of error associated with point estimates
made using the BW method is �9.4% for deuterium and
�1.17% for oxygen.
[20] The increase in average estimation error with

decreasing data density bears on our ability to reconstruct
short-term (interannual) variation in the spatial distribution
of stable water isotopes in precipitation. For example, the
average dD prediction error for a network of 50 stations
is >1.5 times greater than for a network of 340 stations
(Figure 3b). In the entire GNIP database, there are only 44
intervals of 12 consecutive months (out of 469 possible) for
which dD is known at 50 or more sites, and the greatest
number of observations in any such interval is 61. Thus lack
of synchronous, short-term data is likely to impose severe
limitations on our ability to uncover interannual patterns of
variation in the spatial distribution of dD and d18O of
precipitation.

4.2. Patterns of Error

[21] To further investigate error associated with estimat-
ing the stable isotopic composition of precipitation from a

Figure 3. Average magnitude of dD estimation error
(L1 norm), plotted against the number of data used in the
interpolation. Values in Figure 3a were calculated only for
estimation at points within 10 arc degrees of a data station,
allowing comparison between all methods. For most sample
sizes the BW method has an average magnitude of error
�1.0% less than the other methods, with triangulation
providing the second best estimates. Values calculated based
on estimates at all stations (Figure 3b) show the unbiased
trends in estimation error with data number and indicate the
average magnitude of error expected for interpolation at a
randomly selected location using a given method and number
of data. The Cressmanmethod does not produce estimates for
sites more than 10 arc degrees from the nearest data station,
and cannot be compared to the other methods using this
method. Estimation error decreases as more data are used,
and does not approach an asymptotic limit at high n.

Figure 4. Average magnitude of d18O estimation error (L1
norm), plotted against the number of data used in the
interpolation. Panels are as in Figure 3. The patterns for
d18O are similar to those for dD (Figure 3), with the BW
method having an average d18O estimation error �0.18%
less than the other methods at most data densities.
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large data set by interpolation, we more closely examine the
results of the N � 1 jackknife analysis for d18O (Figure 5).
All methods perform similarly over the 90% of their error
distributions where d18O is estimated most accurately, and
for these stations the magnitude of estimation error is less
than �2.5% (Figure 5a). Within the remaining 10% of the
distribution, however, the BW method reduces the magni-
tude of error by up to 3% relative to the others. Comparing
the probability distribution for signed error among methods
(Figure 5b), we see that a large part of this improvement is
due to the reduction of error at stations where the models
produce large, negative errors (i.e., model predicted values
are much greater than the measured values). One possible
explanation for this pattern is that the inclusion of elevation
as a variable in the BW model improves the quality of
predictions for high-altitude sites where models that ignore
topography would tend to overestimate d18O. Comparison
of the correlation between signed error and station elevation
for the 4 methods (Table 1) shows that all methods except
the BW method do exhibit a significant relation between
these quantities, and supports the hypothesis that some of
the improvement offered by the BW scheme is due to
incorporation of altitude effects. All methods show a
significant relation between magnitude of error and distance
between the estimation location and the nearest data station
(Table 1). This highlights the fact that all the methods
investigated rely, to some degree, on spatial interpolation
between proximal data stations to describe regional varia-
tions in dD and d18O.
[22] Lastly, we investigated the relations between the BW

model parameters and n, the number of data stations used to

fit the model. Significant relations were seen between n
and b2, the distance weighting term, and between n and the
root mean square error (RMSE) for the fit between the
model and data (Figure 6). Both parameters decrease as n
increases. The decrease of b2 as n increases indicates that as
the number and spatial density of data stations increases the
model adjusts to describe isotopic variation at smaller
spatial scales. Coincident reduction of RMSE for the model
fit demonstrates that, through the b2 adjustment, the model
is describing a larger proportion of the variance in the data.
The decrease of these parameters with increasing n persists
throughout the range of n investigated and does not show
strong asymptotic behavior, suggesting that the addition of
new data stations should further decrease the spatial scale

Figure 5. Probability distributions for estimation error in the N � 1 d18O jackknife. Symbols as in
Figure 3. (a) Exceedence probability plot for unsigned error. The BW method provides modest
improvement over the other methods in the lower 90% of the error distribution; the most substantial
improvement comes in the upper 10%, where estimation error is reduced by up to 3%. (b) Probability
distribution for signed error. The largest differences among methods occur in the tails of the distributions,
especially in the lower 5%. The improvement offered by the BW model at these stations, where purely
spatial models significantly overestimate the d18O of precipitation, may derive in part from the
incorporation of altitude effects in the BW model.

Table 1. Correlation Between d18O Estimation Error and Physical

Variables

Estimation Method �error(%)/�alt(km)a, b �error(%)/�distance(�)
a, c

Triangulation �1.07 (<0.0001) 0.07 (<0.001)
Inv. dist. (b1 = 2�) �1.23 (<0.0001) 0.06 (<0.001)
Cressmand �1.16 (<0.0001) 0.11 (<0.001)
BW �0.07 (0.63) 0.08 (<0.0001)

aThe p values for the significance of slopes given in parentheses.
bRegression slope between signed error and site altitude;�alt is change in

altitude.
cRegression slope between unsigned error and distance to nearest data

station in arc degrees;�distance is change in distance between estimation site
and nearest data station.

dRegressions for the Cressman method only consider estimation at sites
within 10� of a data station.
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over which dD and d18O variation can be described and
increase the goodness of fit of the BW model.

4.3. Spatial Distribution of Water
Isotopes in Precipitation

[23] Maps representing our optimal (BW model), inter-
polated dD and d18O values for modern mean annual
precipitation (Figures 7a and 8a) clearly depict patterns
that are expected based on observation and theoretical
considerations, including: (1) decreasing dD and d18O from
the lower midlatitudes toward the poles [Dansgaard, 1964],
(2) a local decrease in the dD and d18O of precipitation from
the lower midlatitudes to equatorial regions of high precip-
itation [Rozanski et al., 1993], (3) lower dD and d18O values
at high elevations [Dansgaard, 1964], and (4) depletion of
the heavy isotopes from coastal regions toward the conti-
nental interiors [Rozanski et al., 1993]. Effects 1 and 3 can
be seen globally on both maps. Effect 2 is most apparent
over equatorial Southeast Asia and the equatorial Atlantic
and Pacific oceans. Effect 4 is most evident across northern
Eurasia and North America. With the exception of effect 2,
these patterns can be attributed to the preferential conden-
sation of vapor molecules containing heavy isotopes during
progressive rainout, commonly modeled as a Raleigh-type
process. Effect 2 is thought to result from decreased
evaporative enrichment of the heavy isotope in raindrops
falling in large-volume precipitation events or through a
more humid equatorial atmosphere. Effects 1–3 are directly
represented by the empirical part of our interpolation model.

Effect 4 is represented through the spatial interpolation;
therefore its depiction on our maps depends on the presence
of data stations that document regional heavy isotope
depletion in the continental interiors.
[24] In addition to these previously documented effects,

one of the most dramatic patterns depicted in both maps is
the enhanced zonal heterogeneity of the stable isotope
composition of precipitation at high northern latitudes. For
example, the interpolated dD of precipitation at 60� north
latitude ranges from a low of �170% over southeastern
Alaska, to a high of �50% in the central north Atlantic, and
the interpolated dD at sea level over the Atlantic ocean at
this latitude is 45% heavier than that over the Pacific.
Bowen and Wilkinson [2002] pointed out that this effect is
likely due to elevated zonal heterogeneity of vapor transport
patterns at high latitudes. In the case of our example, the
anomalously high dD and d18O values of precipitation
falling over the north Atlantic ocean can be attributed to
the influence of the Gulf Stream current, which brings
relatively warm water to this ocean. The presence of warm
water provides a local source for vapor and reduces the
latitudinal temperature gradient over this region, resulting in
less rainout from northward-moving air masses. Represen-
tation of this effect in the modern isotopic fields suggests
that substantial deviations from this pattern in isotopic
archive records could be related to change in the oceanic
and/or atmospheric circulation regimes affecting this region.

4.4. Confidence of Predictions

[25] The 95% confidence intervals for the dD and d18O
predictions (Figures 7b and 8b) range from 0.5 to 45% for
dD and from 0.05 to 6.5% for d18O. Confidence intervals
are largest at high latitudes and smallest in low- to midlat-
itude regions with substantial data coverage. This reflects, in
part, the poorer fit of the empirical relation between latitude
and dD or d18O at high latitudes. In general, confidence
intervals are reduced in the vicinity of data stations, and
even at high latitudes the confidence intervals near data
stations are commonly 4% or less for dD and 0.5% or less
for d18O. Confidence intervals are slightly higher at high
altitudes than for adjacent low altitude areas, reflecting a
small uncertainty in the isotope/altitude relation.
[26] In some cases, bands or ‘‘bull’s-eye’’ regions of large

confidence intervals occur in close proximity to data sta-
tions, for example in eastern Alaska, over the Himalayas,
and in eastern and Saharan Africa. In each of these cases,
increased uncertainty of prediction arises from spatial jux-
taposition of data that conflict in the spatial interpolation
portion of our model. In some cases the conflict may
indicate the presence of stations where measured values
represent anomalous years, but in others there may be a
mechanistic explanation for the conflict. For example, in
Alaska and the Himalayas, this effect likely results from the
close proximity of coastal stations, with relatively high dD
and d18O values, and inland stations receiving precipitation
relatively depleted in the heavy isotopes. Resulting bands of
high confidence intervals reflect uncertainty in the spatial
patterns of rainout over these regions. The ‘‘bullseye’’
patterns in Africa occur around high-altitude stations that
receive precipitation with anomalously high dD or d18O
values that are close to the values recorded at nearby low-
altitude stations. We previously noted that the slope of the
d18O/altitude relation in eastern Africa is significantly less

Figure 6. The distance weighting term b2 and root mean
square error (RMSE) for the BW d18O model fit at a variety
of station densities. Both parameters decrease in an
approximately linear fashion as the number of stations
increases. The nearly linear decrease of b2 suggests that at
higher spatial station densities, the model is able to describe
patterns in the d18O fields at a finer spatial resolution.
Coincident, linear decrease of the RMSE for the model fit
shows that the model describes a greater proportion of the
data variance as the number of data increases, and suggests
that this trend will continue as more stations are added.
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than the global average [Bowen and Wilkinson, 2002]; this
contributes to the unusual high-altitude dD or d18O values
and increased uncertainty of predictions for this region.
[27] Comparison of maps of estimated dD and d18O with

those of confidence intervals reveals the relative robustness
of patterns depicted on the isotope maps and indicates
regions where additional water isotopes in precipitation
data is most needed. For example, Figures 7a and 8a
indicate depletion of the heavy isotopes in rainwater falling
over eastern Siberia, but Figures 7b and 8b reveal that the
confidence of the estimates in this region is low and
suggests that these patterns may be spurious. This region,
polar regions, Greenland, much of North America, and areas
discussed in the preceding paragraph are areas where high

confidence intervals indicate that our understanding of the
spatial distribution of stable water isotopes in precipitation
would benefit substantially from future monitoring efforts.
Integration of stable isotope measurements on snowpack
from Antarctica and Greenland might also provide valuable
data constraining interpolated dD and d18O estimates for
these areas.

4.5. Deuterium Excess

[28] Deuterium excess in precipitation is a useful tracer of
vapor source and has been related to meteorological con-
ditions at vapor source regions [e.g., Rozanski et al., 1993]
and to vapor recycling over the continents [e.g., Gat et al.,
1994]. Deuterium excess values calculated from our dD and

Figure 7. (a) Interpolated dD of precipitation and (b) 95% confidence intervals for these estimates.
These maps were made using the BW method, GNIP station data (crosses in Figure 7b), and digital
elevation data, as described in the text. See text for discussion.
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d18O maps show a wide range, with extreme values less than
�5% and greater than 20% (Figure 9a). The global mean
value of d is approximately 10%, and using our statistical
analysis of the interpolated dD and d18O estimates presented
above we are able to highlight regions where d deviates
significantly from this value (Figure 9b). We find that large
regions where d is significantly different from the global
mean are few and, in general, correspond to locations where
unusual deuterium excess values have been recognized
based on single-station data [Rozanski et al., 1993]. These
include areas of high d in the eastern Mediterranean,
northern Africa, and western Australia and low d values
over the Antarctic Peninsula, Kamchatka, and southern
Greenland. Merlivat and Jouzel [1979] have shown that d

over oceanic vapor source regions is very sensitive to the
relative humidity of the atmosphere, with greater relative
humidity producing lower d values. Comparison of our map
with maps of stratospheric humidity [Peixoto and Oort,
1996] indicates a close correspondence between the main
regions of low d and those characterized by high annual
average relative humidity (>85%). Furthermore, the signif-
icant high-d anomalies shown in Figure 9b are uniformly
associated with regions of low humidity (<50%) in the
lower stratosphere.
[29] It is important to note that Figure 9b indicates only

the confidence that estimated d values are different from the
global mean value, and that other patterns depicted on the
map may also be significant. For example, Gat et al. [1994]

Figure 8. (a) Interpolated d18O of precipitation and (b) 95% confidence intervals for these estimates.
These maps were made using the BW method, GNIP station data (crosses in Figure 8b), and digital
elevation data, as described in the text. See text for discussion.
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examined the d of precipitation and river waters over the
northern United States and Canada and found that the d
values of precipitation to the east of the Great Lakes are
much greater than those to the west, a phenomenon that
they attribute to the contribution of evaporated lake water
to atmospheric moisture. This pattern is clearly depicted
in the d values shown in Figure 9. Patterns of d variation
are apparent on the global scale, as well, including consid-
erable variation of d with latitude (Figure 10a). The high
deuterium excess shown for the polar regions in Figure 10a
is very poorly constrained and cannot be considered
meaningful. The other patterns shown are consistent with
the geographic distribution of significant d anomalies
(Figure 9b) and are likely more robust; these may be related
to meteorological conditions over oceanic vapor source

regions. In particular, variation of d with latitude closely
mirrors that of atmospheric relative humidity over the oceans
(Figure 10b) [Peixoto and Oort, 1996]. Further statistical
tests are required to evaluate the significance of regional and
global d patterns as depicted through interpolated stable
isotope fields, but our analysis provides the groundwork
for conducting such tests on a case-by-case basis.

5. Conclusions

[30] Comparison of four methods for the spatial interpo-
lation of dD and d18O in precipitation data shows that the
method proposed by Bowen and Wilkinson [2002], and
modified here, reduces the average error of estimates by
10–15% relative to other methods tested. The magnitude of

Figure 9. (a) Deuterium excess, calculated from interpolated dD and d18O shown in Figures 7 and 8.
(b) As in Figure 9a, but regions where the 95% confidence interval for D excess includes the global mean
value (10%) are masked with gray; regions where the D excess is significantly different from the global
mean value are unmasked.
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error reduction is consistent over a wide range of data
densities, although the average magnitude of error for all
methods increases substantially as the number of data
stations in the training set is reduced. Increased accuracy
of the BW method seems to result in part from substantial
reduction of high-magnitude errors; this method predicts dD
and d18O better at the stations where all methods perform
most poorly. The other three methods (triangulation, inverse
distance weighted interpolation, and Cressman objective
analysis) each perform equally well over the range of data
densities examined, although triangulation may provide
modest improvements relative to the other methods when
a large number of data is available. Given the current data
density of 340 stations for dD and 348 stations for d18O, the
average magnitude of prediction error for the BW method is
9.4 and 1.17% for dD and d18O, respectively.
[31] Using the BW method, we generate high-resolution

global maps of the estimated dD and d18O of precipitation
with continental and oceanic coverage. Spatial patterns
depicted in these maps reflect effects predicted based on
theory or previously observed by measurement, including
meridional, altitudinal, and continental rainout effects and
the tropical ‘‘amount effect’’ [Rozanski et al., 1993]. In
addition, the maps depict regional patterns in the spatial
distribution of stable water isotopes in precipitation related
to meteorological and climatological phenomena such as a

plume of heavy water precipitating over the north Atlantic.
Maps of the estimated 95% confidence intervals for the
interpolated dD and d18O of precipitation give a quantitative
measure of the robustness of spatial patterns depicted on the
dD and d18O maps, highlight regions where some data are
unusual when viewed in a regional context, and indicate
areas where additional data are most needed. The isotope
and confidence interval maps can be interpreted in conjunc-
tion to investigate complex spatial patterns in the dD and
d18O data sets; we provide an example where we map
regions of extreme deuterium excess values. These maps
present a quantitative, statistically robust depiction of the
spatial distribution of stable water isotopes in precipitation,
and can be used to provide input functions for stable isotope
hydrology models, as a benchmark against which output
from isotope tracer-equipped GCMs can be compared, and
as a template for the interpretation of dD and d18O archive
records.
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