
Statistics for analyzing and modeling
precipitation isotope ratios in IsoMAP

The IsoMAP uses the multiple linear regression and geostatistical methods to analyze isotope data.

Suppose the response variable Y (s) and the vector of independent variable x(s) are observed at a

finite number of sites s1, · · · , sn. The multiple linear regression method assumes Y (s) and Y (s′)

are independent but the geostatistical method assume they are not. In the following, we will first

present the statistical methodology and then provide a real example to numerical interpret it.

1 Multiple Linear Regression

The multiple regression model provides the estimates of parameters and their ANOVA table. The

multiple linear regression approach is to view the data as arising from independent observations, in

which the statistical model is

Y (s) = x′(s)β + ϵ(s), (1)

where β is the vector of unknown parameters and ϵ(s) is an identically independent distributed (iid)

error term with

ϵ(s) ∼iid N(0, σ2).

In matrix notation, Model (1) can be expressed

Y = Xβ + ϵ,

where Y = (Y (s1), · · · , Y (sn))
′, X = (x(s1), · · · , x(sn))′ and ϵ = (ϵ(s1), · · · , ϵ(sn))′. It assumes

ϵ ∼ N(0, σ2I)

so that Y ∼ N(Xβ, σ2I). The unknown parameters β and σ2 can be estimated by the least square

(LS) method:

β̂ = (X ′X)−1X ′Y (2)

and

σ̂2 =
1

n− p
Y ′[I −X(X ′X)−1X ′]Y, (3)

where p is the column dimension of X. The variance-covariance matrix of β̂ is computed by

Cov(β̂) = σ̂2(X ′X)−1. (4)

Let β̂j be the j-th component of β̂ and σ̂jk be the (j, k) entry of Cov(β̂). Then, its variance

V (β̂j) = σ̂jj
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and its standard error is

std(β̂) =
√
σ̂jj.

The t-value of β̂j is

t(β̂j) =
β̂j

std(β̂j)
.

Let α be the significance level. If we test

H0 : βj = 0 ↔ H1 : βj ̸= 0,

then we claim βj ̸= 0

|t(β̂j)| > tα/2,n−p,

where tα/2,n−p is the upper α/2 quantile of tn−p distribution. The p-value of the test is given by

P{|tn−p| > |t(β̂j)|}.

The fitted value of the response variable at a general site s is

Ŷ (s) = x′(s)β̂.

The sum of square of model (SSM) is defined by

SSM =
n∑

i=1

[Ŷ (si)− Ȳ ]2,

the sum of square of error (SSE) is defined by

SSE =
n∑

i=1

[Y (si)− Ŷ (si)]
2,

and the sum of square of total (SST) is defined by

SST =
n∑

i=1

[Y (si)− Ȳ ]2,

where

Ȳ =
1

n

n∑
i=1

Y (si).

Then,

SSM = SST − SSE.

The R-square of the model is defined by

R2 =
SSM

SST
.

It is known that 0 ≤ R2 ≤ 1. If R2 is close to 1, then the fit is good; otherwise, the fit is bad.

Usually, the fit of a model is considered good if R2 > 0.2.
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Table 1: Format of parameter estimates of the regression method

Variable Estimate Std t-value p-value

β0 β̂0 std(β0) β̂0/std(β̂0) P{|tn−p| > β̂0/std(β̂0)}
β1 β̂1 std(β1) β̂1/std(β̂1) P{|tn−p| > β̂1/std(β̂1)}
...

...
...

...
...

βp−1 β̂p− std(βp−) β̂p−1/std(β̂p−1) P{|tn−p| > β̂p−1/std(β̂p−1)}

Table 2: Format of ANOVA of the regression method

Degree of Sun of Mean of

Variable Freedom Suqare Square F -value P -value

β1 df1 SS1 MS1 = SS1/df1 F1 = MS1/MSE P{Fdf1,n−p > F1}
...

...
...

...
...

...

βp−1 dfp−1 SSp−1 MSp−1 = SSp−1/dfp−1 Fp−1 = MSp−1/MSE P{Fdfp−1,n−p > Fp−1}
Error n− p SSE MSE = SSE/(n− p)

Total n− 1 SST

The IsoMAP reports the type I ANOVA by the stepwise method. To compute the ANOVA

value of j-variable, it computes the SSM1 of the first model

Y (s) = β0 + β1x1(s) + · · ·+ βj−1xj−1(x) +N(0, σ2)

and SSM2 the second model

Y (s) = β0 + β1x1(s) + · · ·+ βj−1xj−1(x) + βjxj(s) +N(0, σ2).

Then, the ANOVA value of βj is

SSj = SSM2 − SSM1 = SSE1 − SSE2.

Let dfj be the degrees of freedom of j-th varaible, then its p-value is

P{Fdfj ,n−p > Fj}

where

Fj =
SSj/dfj

SSE/(n− p)
=

MSj

MSE
, j = 1, · · · , p− 1.

If the p-value is less than the significance level, then βj is significantly different from 0.

To summarize, we display the format of parameter estimates in Table 1 and the format of

ANOVA in Table 2
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2 Geostatistical Model

The approach taken here is to view the data as arising from geological space where each observation

corresponds to a spatial location. From this perspective, it might be appropriate to call our method

a geostatistical method [2]. The statistical model describes the relationship between the response

variable and the independent variables according to a geostatistical model in which ϵ(s) in Equation

(1) is assumed a spatially correlated error term. The error term ϵ(s) are normally distributed with

zero mean and a certain covariance function. The covariance function is assumed stationary and

isotropic, which has the form of

Cov(ϵ(s), ϵ(s+ h)) = σ2ρ(u), u = ∥h∥, (5)

where σ2 = V [ϵ(s)] is the variances of the Gaussian process and ρ(u) is the correlation function.

A legitimate correlation function must be positive-definite. In practice, this is usually ensured by

working within one of several standard classes of parametric models. Overall, one can generally

choose the well-known Matérn correlation function [9] given by

ρθ(u) =
θ1

2θ3−1Γ(θ3)
(
u

θ2
)θ3Kθ3(

u

θ2
), θ = (θ1, θ2, θ3), u > 0, (6)

where 0 ≤ θ1 ≤ 1, θ2 > 0 and Kθ3(·) is the modified Bessel function. The range parameter θ2

controls the rate of decay of ρθ(u) between observations as distance increases. The smoothness

parameter θ3 controls the behavior of the smoothness of ρθ(u). The Matérn class includes the

exponential correlation function when θ3 = 0.5. The correlation function also includes the nugget

effect, where the nugget effect is present if θ1 < 1. In addition, θ1 also controls the magnitude of

spatial dependence in which a geostatistical model reduces to a multiple regression model if θ1 = 0.

The unknown parameter β in Equation (6) along with the correlation function ρθ(u) reflects the

spatial distribution of the response variation Y (s) (i.e. δ18O in this article).

In matrix notation, Models (1) and (5) can be expressed as

Y = Xβ + ϵ

where

Rθ = Corr(Z) =


1 ρθ(d12) · · · ρθ(d1n)

ρθ(d21) 1 · · · ρθ(d2n)
...

...
. . .

...

ρθ(dn1) ρθ(d2n) · · · 1

 (7)

where dij is the distance between sites si and sj.

We use the maximum likelihood method to estimate β and θ, which estimates β and θ by

maximizing the following loglikelihood function

ℓ(β, σ2, θ) = −n

2
log(2π)− n

2
log(σ2)− 1

2
log | det(Rθ)| −

1

2σ2
(Y −Xβ)tR−1

θ (Y −Xβ). (8)

4



Because it is difficult to maximize ℓ(β, σ2, θ) with respect to β, σ2 and θ simultaneously, we use the

profile likelihood method to first compute the MLE of θ and then compute the MLE of β, σ2. We

briefly introduce our algorithm below.

If θ is given, then the (conditional) MLE of β can be derived by the generalized least square

(GLS) method:

β̂θ = (X ′R−1
θ X)−1X ′R−1

θ Y (9)

and

σ̂2
θ =

1

n
Y ′MθY, (10)

where

Mθ = R−1
θ −R−1

θ X(X ′R−1
θ X)−1X ′R−1

θ .

Put (9) and (10) into (8). We have the profile loglikelihood function

ℓP (θ) = −n

2
[1 + log(

2π

n
)]− 1

2
log | det(Rθ)| −

n

2
log(Y tMθY ). (11)

The profile maximum likelihood estimate (PMLE) of θ can be derived by using the Newton-

Raphson algorithm. Because the smoothness parameter θ3 is sensitive in the algorithm, we compute

the PMLE of θ1 and θ2 conditioning on θ3 and then find the best θ3 by a one-dimensional optimiza-

tion method (e.g. the Golden Section Algorithm). If θ̂ is derived, then the MLE of β and σ2 can

be derived by using (9) and (10).

When θ̂, σ̂2 and β̂ are derived, the interpolation of Y (s) at an unobserved site s0 can be derived

by using the universal kriging method. Let x0 = x(s0) be the vector of independent variables at

site s0 and

c0 = Corr(Y (s0), Y ) = (ρθ̂(d01), · · · , ρθ̂(d0n)),

where d0i is the distance between sites s0 and si. The universal kriging method interpolates Y (s0)

be Y ∗(s0) with the conditional expected value as

Y ∗(s0) = E[Y (s0)|Y ] = x′
0β̂ + c′0R

−1

θ̂
(Y −Xβ̂). (12)

The variability of the universal kriging interpolation is given by the mean squared prediction error

(MSPE), which is

MSPE[Y ∗(s0)] =E[Y (s0)− Y ∗(s0)]
2

=σ2[1 + x′
0(X

′R−1

θ̂
X)−1x0 − c′0R

−1

θ̂
X(X ′R−1

θ̂
X)−1X ′R−1

θ̂
c0].

(13)

The detail of the derivation of Equations (12) and (13) can be found in [10].

The aim of model selection is to find the best linear function x′(s)β in Equation (1). The best

linear function x′(s)β is selected from a collection of candidates. The AIC of a specific model is

AIC = −2ℓ(β̂, σ̂2, θ̂) + 2k

5



where β̂, σ̂2, θ̂ are the MLE of β, σ2 and θ, and k is the number of parameters under a specific

model. Let Y ∗
(i)(si) be the kriging interpolation of Y (si) if it is excluded from the dataset. Then,

the CV of a model is given by

CV =
1

n

n∑
i=1

[Y (si)− Y ∗
(i)(si)]

2.

The best model has the lowest AIC or CV value.

3 Moran’s I Test for Spatial Dependence

A number of permutation testing methods have been proposed to test for spatial dependence.

Almost all of them need a well-defined measure of the closeness (or weight) between two units. We

choose Moran’s I [8] in IsoMAP because it is the most popular one.

Let ϵ̂i be the residual of the regression model at i and wij be the measure of the closeness between

units i and j. Moran’s I is defined as

I =
1

S0b2

n∑
i=1

n∑
j=1,j ̸=i

wij ϵ̂iϵ̂j, (14)

where S0 =
∑n

i=1

∑n
j=1,j ̸=i wij and bk =

∑n
i=1 ϵ̂

k
i /n. Moran’s I statistic usually ranges between −1

and 1 even though its absolute value could be over 1 in extreme cases. With a coefficient close

to −1, Moran’s I indicates neighborhood dissimilarity; with a coefficient close to 1, Moran’s I

indicates neighborhood similarity. When the coefficient of Moran’s I is close to 0, it indicates

spatial randomness or independence [1].

The p-values of Moran’s I is computed under random permutation test schemes. A random per-

mutation test generally calculates the moments of the test statistic under every possible arrangement

of the data. These arrangements would be used to generate the distribution of the test statistic

under the null hypothesis. A related approach uses many Monte Carlo rearrangements of the data

rather than enumeration of all of the possible arrangements [3]. If the number of Monte Carlo

rearrangements is large and each arrangement has equal probability in each Monte Carlo replicate,

then the exact test and Monte Carlo permutation test will have similar results, and the Monte Carlo

permutation test is asymptotically equivalent to the exact permutation test ([4] 185-187). Note that

for a general n, there are n! possible permutation arrangements in the exact permutation test. It

is generally impossible to obtain the exact moments of a test statistic under the permutation test

scheme. However, since the numerator of Moran’s I is in quadratic form and their denominators

are permutation invariant, the exact expressions of their moments under random permutation test

scheme are available and have been included in the many textbooks (e.g. see Cliff and Ord [1]). In

the following, we denote ER(·) and VR(·) as the expected value and variance of a statistic under the

exact permutation test scheme. Formulae of the moments then are given below accordingly:

ER(I) = − 1

n− 1
,
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and

ER(I
2) =

S1(nb
2
2 − b4)

S2
0b

2
2(n− 1)

+
(S2 − 2S1)(2b4 − nb22)

S2
0b

2
2(n− 1)(n− 2)

+
(S2

0 − S2 + S1)(3nb
2
2 − 6b4)

S2
0b

2
2(n− 1)(n− 2)(n− 3)

,

where Bk =
∑n

i=1 z
k
i /n, S1 =

∑n
i=1

∑n
j=1,j ̸=i(wij + wji)

2/2 and S2 =
∑n

i=1[
∑n

j=1,j ̸=i(wij + wji)]
2. The

variances is

VR(I) = ER(I
2)− E2

R(I),

Assume I is asymptotic normal. Then, it p-value is calculated by a two-sided z-test according to

2[1− Φ(|I − ER(I)√
VR(I)

|)].

If the p-values are less than the significance level (e.g. 0.05), we conclude the significance of spatial

dependence.

In the IsoMAP, we take zi as the i-th residual of the regression model and choose wij by the

k-nearest neighbor method. The k-nearest neighbor is defined by wij = 1 if the distance between

si and sj are among the least k distances between si and all the rest sites and wij = 0 otherwise.

4 An Example

The example is available at the homepage of IsoMAP with Key 5373, case name ’O18Global’, and

start time August 15, 2011. In this example, we selected data from 1980 to 1995 which included

all the months from South Pole to North Pole. The final dataset contained 341 stations. We chose

δ18O as response variable, and elevation, absolute latitude, and the square of latitude as independent

variables. Then, the statistical model was

δ18O(s) = β0 + β1e(s) + β2|l(s)|+ β3l
2(s) + e(s) + ϵ(s),

where e(s) was the elevation and l(s) was the latitude of site s.

We computed the spherical distance between sites si and sj according to the formula

dij =2RE arcsin{1
2
[(cos la(si) cos lo(si)− cos la(sj) cos lo(sj))

2

+ (cos la(si) sin lo(si)− cos la(sj) sin lo(sj))
2 + (sin la(si)− sin la(sj))

2]1/2},
(15)

where RE = 6378.1km was the radius of the Earth. We used dij to define the Matérn correlation

function ρθ(u) in Model (6) and the correlation matrix Rθ in Model (7).

The ANOVA and parameter estimates are given by Tables 3 and 4. The estimate of the variance

of the error term then is

σ̂2 = MSE =
1851.66

337
= 5.49454.

Therefore, the fitted multiple linear regression model was

δ18O(s) = −5.689− 0.00168Elev(s) + 0.2053|Lat(s)| − 0.00538Lat2(s) + ϵ(s)
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Table 3: ANOVA of the multiple regression model

Variable df SS MS F-value p-value

Elevation (β1) 1 58.0629 58.0629 10.5674 0.00126721

Abs(Latitude) (β2) 1 4024.97 4024.97 732.539 0

Latitude Square (β3) 1 449.111 449.111 81.7377 0

Error 337 1851.66 5.49454

Total 340 6383.8

Table 4: Parameter estimates of multiple regression model

Variable Estimate Standard Error t-value p-value

β0 −5.68898 0.249172 −22.8315 0

β1 −0.00168255 0.000106863 −15.7449 0

β2 0.20534 0.0148348 13.8418 0

β3 −0.00538409 0.000209837 −25.6584 0

with ϵ(s) ∼iid N(0, 5.49454). This model can be used to interpolate δ18O be the multiple regression

method. The QQ-plot in the regression method was almost a straight line, which implies there

was no significant variation of the normal assumption. The residual plot in the regression method

showed randomness which implies no additional transformation is required for the response variable

(e.g. by using the Box-Cox transformation).

We also fitted a geostatistical model, the parameter estimates and ANOVA table are displayed

in Tables 5 and 6 respectively. The fitted correlation function was

ρθ(u) =ρ(0.8820,1092.53,1)(u)

=0.8820(
u

1092.53
)K1(

u

1092.53
)

for u > 0. Because the p-value of Moran’s I was almost 0, we recommend to use the geostatistical

model instead of the regression model.

Table 5: ANOVA of the multiple regression model

Variable df SS MS F-value p-value

Elevation (β1) 1 1449.74 1449.74 191.415 0

Abs(Latitude) (β2) 1 693.622 693.622 91.5813 0

Latitude Square (β3) 1 55.9661 55.9661 7.3894 0.00690032

Error 337 2552.38 7.57384

Total 340 1449.74
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Table 6: Parameter estimates of multiple regression model

Variable Estimate Standard Error t-value p-value

β0 −4.43342 1.06554 −4.16071 4.03135e− 05

β1 0.00165697 0.000116952 −14.168 0

β2 0.162598 0.0598151 2.71835 0.00690032

β3 −0.00500147 0.000812748 −6.15379 2.14676e− 09
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