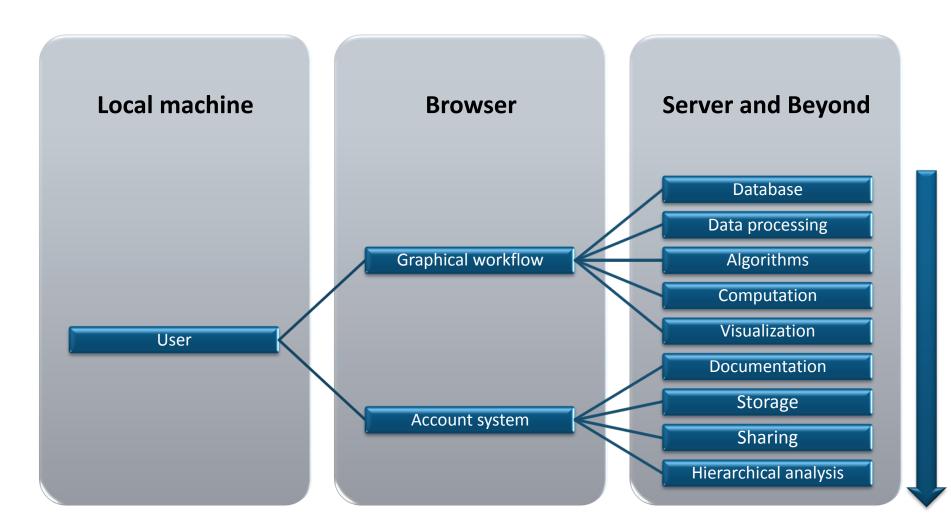
Isoscapes 2011

Introduction to IsoMAP **Isoscapes Modeling, Analysis, and Prediction**

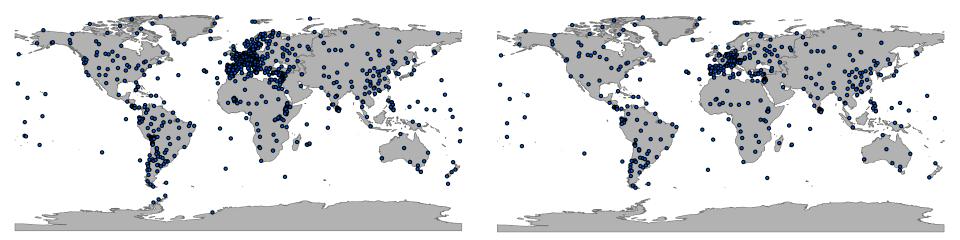

What is IsoMAP

- To the user, and online workspace for:
 - Accessing, manipulating, and analyzing, and modeling environmental isotope data
 - Creating derived data products (isoscapes)
 - Hierarchical modeling using isoscapes
 - Sharing and publishing isoscapes

What is IsoMAP

- Content
 - Current
 - Precipitation H and O
 - Geographic assignment with H and O
 - Near-term
 - Plant leaf water H and O
 - Long-term vision
 - Computational support framework accommodating many environmental geospatial data (isotopic and nonisotopic)

What is IsoMAP



IsoMAP Database

- Managed by IsoMAP team
- Vector (point) data
 - PostGIS spatial database (on PostgreSQL)
 - Almost 104,000 monthly entries from 899 sites
 - Precipitation stable isotope ratios
 - Current sources: GNIP, literature, colleagues
 - Near-term updates: USNIP, GNIP update, your contributions
 - Pre-processed climate and geography data
 - Station data native to GNIP network (WMO)
 - Extracted values from raster sources (ETOPO, PRISM, CRU)

IsoMAP Database

- Vector (point) data
 - IsoMAP DB is designed for flexibility

Waterisotopes.org

IsoMAP.org

IsoMAP Database

- Raster data
 - External data
 - CRU 2.1 climate (global continents, 0.5° resolution)
 - PRISM climate (contiguous USA, 2.5' resolution)
 - ETOPO (global continents + oceans, 5' resolution)
 - Latitude and longitude (global continents + oceans, 5' resolution)
 - Internal data

Isoscapes 2011

• Raster datasets produced in any IsoMAP job

Data Processing

- Driven by user input
 - Spatial
 - Temporal
 - Variables
- Spatial operations
 - Extract data within bounding box
 - Re-sample rasters to lowest common resolution

Data Processing

- Temporal data reduction
 - Reduce monthly values to temporal average for each station
 - Collapse to monthly means
 - Average across months
 - Precipitation-weighting for isotopes, unweighted for others
 - Weighting uses CRU precipitation to reduce missing data
 - Combine with time-independent variables

obs.txt

	А	В	С	D	E	F	G	Н	I.	J
1	ID	time	long	lat	у	Int	elev_e	lat_l^2	lat_abs(I)	
2	933	1	-106.7	52.2	-117.702	1	504	2724.84	52.2	
3	934	1	32.35	67.15	-70.1192	1	26	4509.122	67.15	
4	935	1	36.17	51.77	-69.4016	1	247	2680.133	51.77	
5	936	1	48.03	46.27	-105.139	1	18	2140.913	46.27	
6	937	1	49.63	58.6	-125.374	1	158	3433.96	58.6	
7	938	1	69.07	60.97	-103.338	1	40	3717.341	60.97	
8	939	1	78.37	55.37	-165.412	1	120	3065.837	55.37	
9	940	1	66.53	66.53	-164.732	1	16	4426.241	66.53	
10	941	1	113.13	54.62	-76.103	1	995	2983.344	54.62	
11	942	1	112.43	68.5	-90.0758	1	220	4692.25	68.5	
12	943	1	129.75	62.08	-120.855	1	103	3853.926	62.08	
13	944	1	158.75	52.97	-101.659	1	24	2805.821	52.97	
14	945	1	136.67	45.03	-48.2272	1	68	2027.701	45.03	
15	100400	1	11.56	78.15	-83.1892	1	7	6107.423	78.15	
16	100500	1	13.63	78.07	-66.5099	1	6	6094.925	78.07	
17	142700	1	6.57	58.1	-47.6676	1	13	3375.61	58.1	
18	206000	1	21.53	68.68	-117.198	1	403	4716.942	68.68	
19	307600	1	-3.7	58.38	-55.9084	1	155	3408.224	58.38	
20	348700	1	-1.08	52.88	-49.8177	1	60	2796.294	52.88	
21	353000	1	-0.25	52.16	-48.6854	1	30	2720.666	52.16	
22	365302	1	-1.1	51.6	-45.7484	1	48	2662.56	51.6	
23	395300	1	-10.25	51.93	-34.7911	1	9	2696.725	51.93	

- Precipitation modeling
 - (Geo)statistical code
 - Develop model
 - Apply model to predict (map)
 - Developed by Tonglin Zhang, Purdue Dept. of Statistics
 - Zhang et al., in prep.
 - Poster #26
 - isomapstat.pdf on your thumb drive

- Develop model
 - User specifies problem
 - Spatial
 - Temporal
 - Variables
 - Two models fit to resulting dataset
 - Multiple regression
 - Geostatistical (universal kriging)

• Multiple regression

 $Y(s) = x'(s)\beta + \epsilon(s) \qquad \qquad \epsilon(s) \sim^{iid} N(0, \sigma^2)$

– Fit β given isotope station data
– Predict Y at unknown sites using gridded data

- Moran's I test of global spatial autocorrelation in $\epsilon(s)$ $I = \frac{1}{S_0 b_2} \sum_{i=1}^m \sum_{j=1, j \neq i}^m w_{ij} (z_i - \bar{z}) (z_j - \bar{z})$
 - Used to assess whether spatial pattern remains after regression modeling

- Geostatistical model
 - Isotope value is considered a function of
 - Independent variables
 - Spatially autocorrelated residuals

$$Y^*(s_0) = E[Y(s_0)|Y] = x'_0\hat{\beta} + c'_0 R_{\hat{\theta}}^{-1}(Y - X\hat{\beta})$$

- Fit β and model for spatial covariance (c'_0 , R_0) given isotope station data
- Predict Y at unknown sites using gridded data

- Uncertainty
 - Goodness of fit, parameter uncertainty and significance calculated for all models
 - Precision of estimates given as maps of standard deviations for predictions
 - Propagated from uncertainty in model parameters
 - For regression: model coefficients + error term
 - For geostatistics: model coefficients + spatially varying error term (function of station proximity)

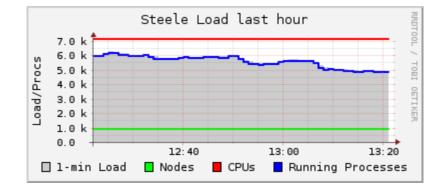
Includes nugget

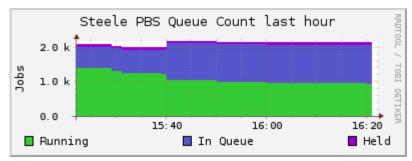
coeff.reg	moranl.reg	coeff.krig
mse.reg		mse.krig
R2.reg		
anova.reg		anova.krig
significance.reg		
estimate.reg		estimate.krig
predreg		predkrig
stdreg		stdkrig

Algorithms - Assignment

- Assignment modeling
 - Given precipitation isoscape and user-input sample value (+ uncertainties)
 - Calculate relative likelihood that sample originated from any pixel on map
- Simple Bayesian probabilistic calculation with non-informative priors

$$P(A_i|B) \approx L(y|\mu_i, \sigma_i^2) = \frac{1}{\sqrt{2\pi\sigma_i^2}} e^{-(y-\mu_i)^2/2\sigma_i^2}$$


 As used in Kennedy et al. (2011, Forensic Science International), after Wunder (Isoscapes, elsewhere)


Computation

- IsoMAP jobs run on NSFsupported grid computing resources
 - Purdue's Steele cluster
 - 893 node, 7144 processor, 67 Teraflop cluster
 - File system network-mounted

Extreme Science and Engineering Discovery Environment

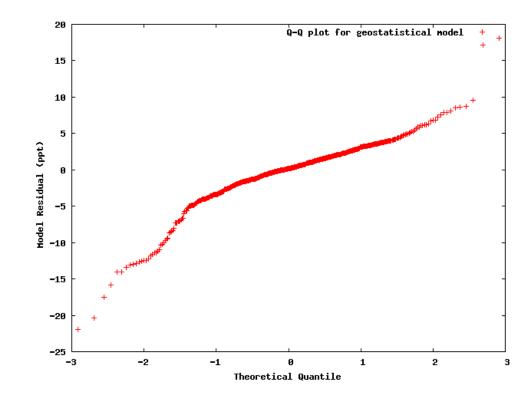
Computation

- On submission
 - Job specifications sent to IsoMAP server
 - Server creates new job description, submits to Steele queue
 - Server monitors status
 - Submitted
 - Pending
 - Active
 - Done
 - Server post-processes results and registers them for display

Visualization

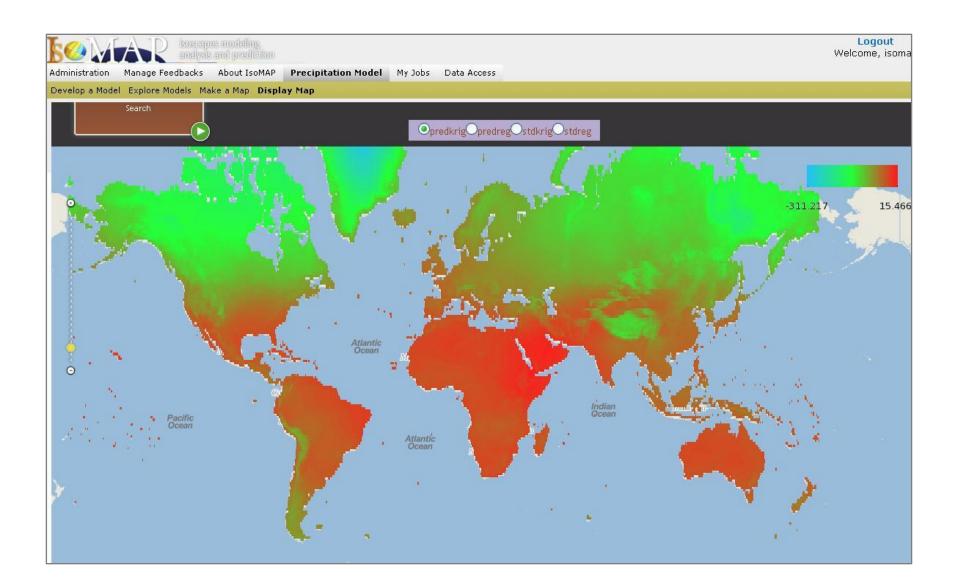
- Computational outputs in a range of custom formats
 - Supports flexibility, program I/O
- Data processing scripts convert output into accessible and standard formats
- Text parsing
 - Interpret statistical output
 - Generate graphics
 - Display

Model Information


Model type: precipitation Dependent variable: d2h Longitude range: -180 to 180 Latitude range: -90 to 90 Year range: 1961 to 1999 Months range: 5, 6, 7, 8 Number of stations: 423 Independent variable 1 : minimum temperaturesquared variable source : cru_processed_point Independent variable 2 : minimum temperature variable source : cru_processed_point Independent variable 3 : precipitation variable source : cru_processed_point

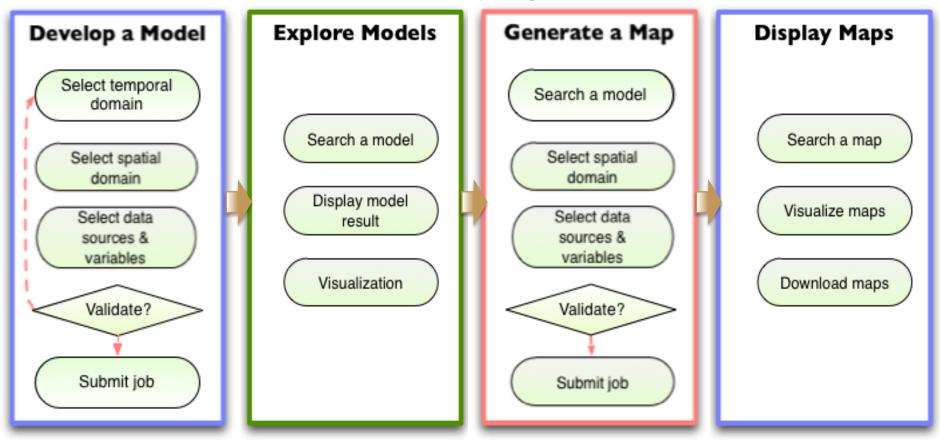
Metadata XML download

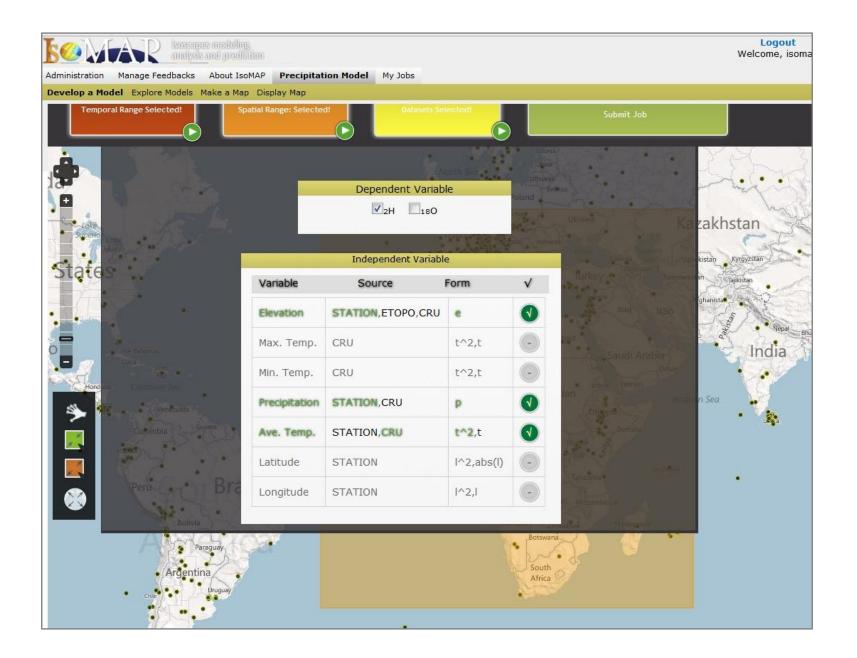
Regression Model

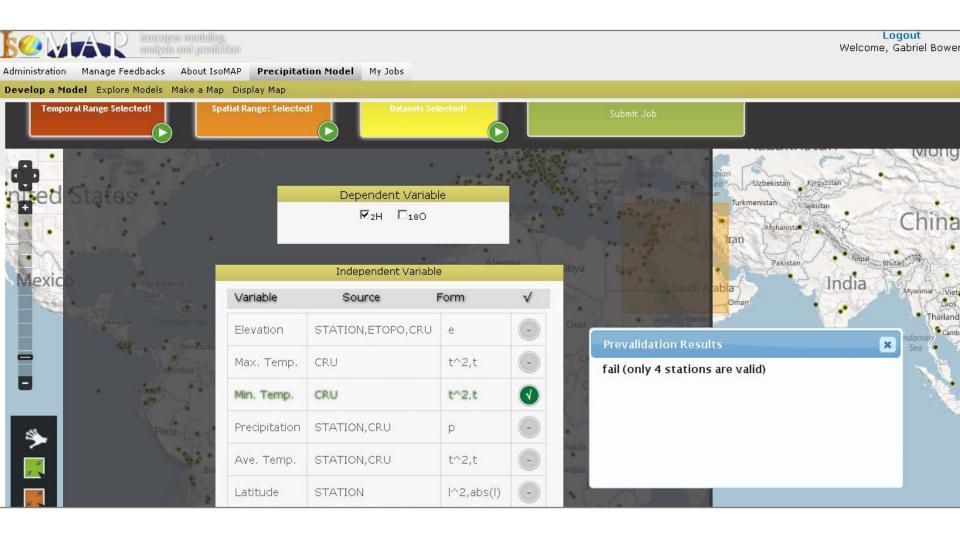

<u>Anova</u>

Variable	df	SS	MS	f-value	p-value
tmn_t^2	1	90527.3	90527.3	146.285	0
tmn_t	1	121889	121889	196.963	0
pre_p	1	5683.95	5683.95	9.18482	0.00259159
Error	419	259295	618.842	-	-
Total	422	477395	-	-	-

Visualization

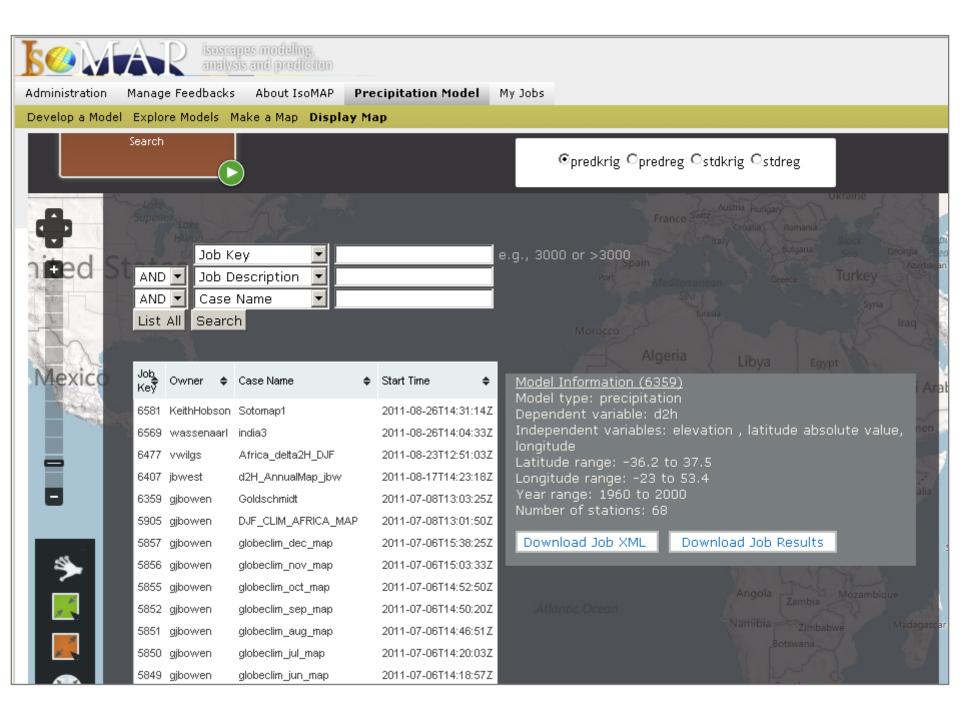

- File conversion
 - Tabular data -> raster
 - Arc ASCII
 - GeoTIFF
 - Display
 - Browser display using OpenLayers
 - Color map rescale on pan and zoom




Graphical Workflow


- Browser-based user interface
- Organizes and guides user through steps of developing analysis, finding and visualizing results
 - Ensures completeness
 - Validates user inputs
 - Provides feedback
- Consistent modular structure, look and feel for most implementations

Precipitation Modeling Workflow



Documentation

- IsoMAP keeps track of what you have done
- Metadata.xml
 - Job specifications
 - Summary of extracted/reduced datasets
 - Computational details
 - Key results
- Home-grown format
 - Designed to offer value to user, and
 - Serve as an information "payload" within the IsoMAP system


```
- <isomap predictionfit>
 - <job info>
     <jobkey>6359</jobkey>
     <description>describe this run</description>
     <job stage>model prediction</job stage>
     <model type>precipitation</model type>
     <isotope>d2h</isotope>
     <formula/>
     <author>gjbowen</author>
     <access>private</access>
    <tags>
       <tag source="user">killme</tag>
        <tag source="system">ui_testing</tag>
     </tags>
     <template_key stage="model_fitting">5903</template_key>
   </job_info>
 - <spatial>
     <proj4>+proj=longlat +ellps=wgs84 +datum=wgs84 +no_defs</proj4>
     <lower_longitude>-23</lower_longitude>
     <lower latitude>-36.2</lower latitude>
   </spatial>
 - <temporal>
     <upre><upre>upper year>2000</upper year>
     <lower year>1960</lower year>
     <time mode>synoptic</time mode>
     <month>1</month>
     <month>2</month>
     <month>12</month>
   </temporal>
 - <point_data>
```


Storage

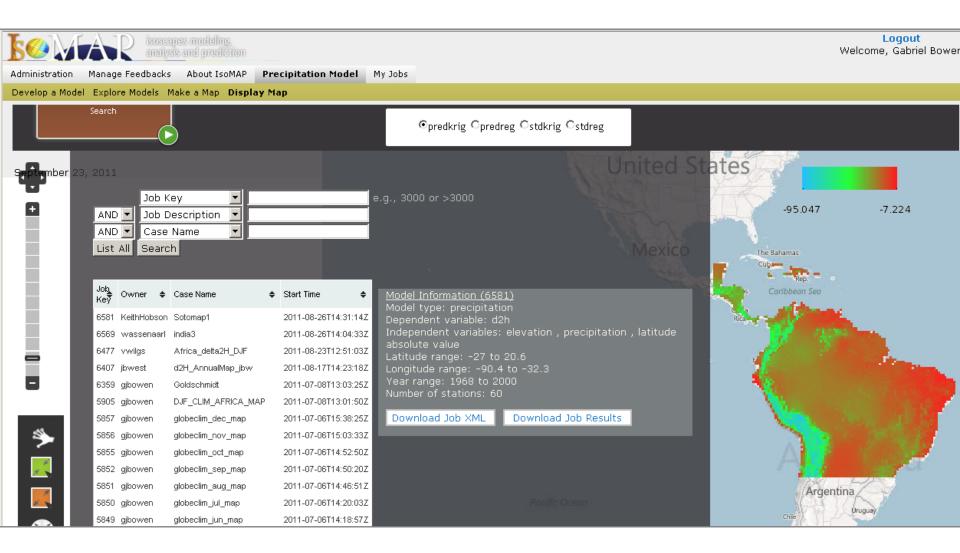
- All your work is stored in a secure file system
 - Accessible through your account
 - Only you manage your jobs, you manage only your jobs
 - Retrieve or reuse results at any time
 - Job 'package' downloadable
 - Metadata
 - Input data
 - Raw and processed results

Welcome, Gabriel Bowen

BOMAR isoscepes modeling, analysis and prediction

Administration Manage Feedbacks About IsoMAP Precipitation Model My Jobs

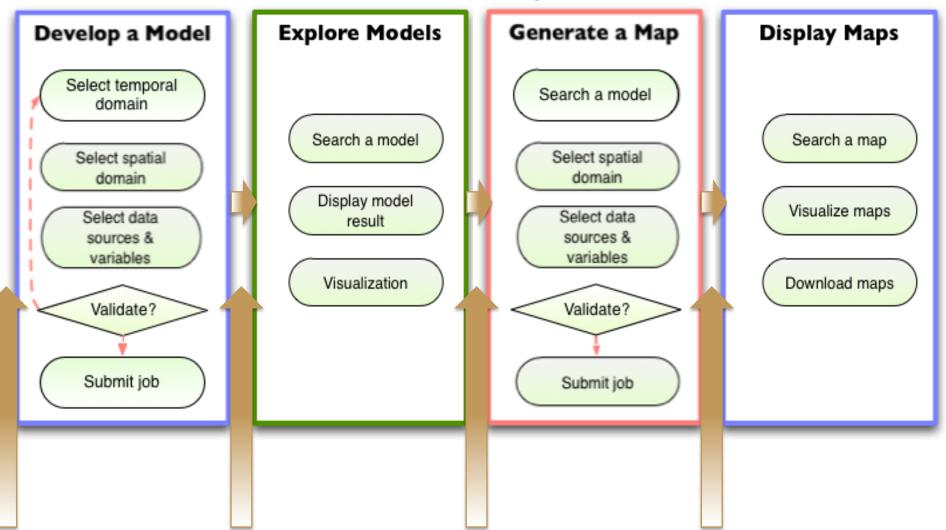
> Fri Sep 23 11:15:18 EDT 2011 Owner of Jobs: gjbowen Refresh Jobs !


Кеу	Case Name	Model Run Type	Application Type	Job Status	StartTime	TimeTaken	Job Queue	Download	Actio	n
6359	Goldschmidt	Prediction	Precipitation	DONE	2011-08-12 13:57:25	4 m 59 s	ccsm	Metadata Results	Publish D	Delete
6105	newtest	Model Fitting	Precipitation	DONE	2011-07-27 06:11:54	3 m 2 s	ccsm	Metadata Results	Publish D	Delete
5905	DJF_CLIM_AFRICA_MAP	Prediction	Precipitation	DONE	2011-07-08 13:08:06	0 m 40 s	ccsm	Metadata Results	Unpublish	Delete
5903	DJF_CLIM_AFRICA_4	Model Fitting	Precipitation	DONE	2011-07-08 13:03:25	2 m 1 s	ccsm	Metadata Results	Publish D	Delete
5902	DJF_CLIM_AFRICA_3	Model Fitting	Precipitation	DONE	2011-07-08 13:01:50	3 m 22 s	ccsm	Metadata Results	Unpublish	Delete
5900	DJF_CLIM_AFRICA_2	Model Fitting	Precipitation	DONE	2011-07-08 12:58:21	0 m 21 s	ccsm	Metadata Results	Publish D	Delete
5898	DJF_CLIM_AFRICA_1	Model Fitting	Precipitation	DONE	2011-07-08 12:55:03	0 m 17 s	ccsm	Metadata Results	Publish D	Delete
5857	globeclim_dec_map	Prediction	Precipitation	DONE	2011-07-06 21:15:45	5 hr 42 m	ccsm	Metadata Results	Publish D	Delete
5856	globeclim_nov_map	Prediction	Precipitation	DONE	2011-07-06 21:14:54	5 hr 21 m	ccsm	Metadata Results	Publish D	Delete
5855	globeclim_oct_map	Prediction	Precipitation	DONE	2011-07-06 21:13:55	5 hr 19 m	ccsm	Metadata Results	Publish D	Delete
5852	globeclim_sep_map	Prediction	Precipitation	DONE	2011-07-06 21:05:13	5 hr 6 m	ccsm	Metadata Results	Publish D	Delete
5851	globeclim_aug_map	Prediction	Precipitation	DONE	2011-07-06 21:01:18	4 hr 48 m	ccsm	Metadata Results	Publish D	Delete
5850	globeclim_jul_map	Prediction	Precipitation	DONE	2011-07-06 20:59:42	4 hr 52 m	ccsm	Metadata Results	Publish D	Delete
5849	globeclim_jun_map	Prediction	Precipitation	DONE	2011-07-06 20:58:04	4 hr 38 m	ccsm	Metadata Results	Publish D	Delete
5848	globeclim_may_map	Prediction	Precipitation	DONE	2011-07-06 20:56:07	5 hr 4 m	ccsm	Metadata Results	Publish D	Delete
5833	globeclim_dec	Model Fitting	Precipitation	DONE	2011-07-06 15:38:25	28 m 1 s	ccsm	Metadata Results	Publish D	Delete
5832	globeclim_nov	Model Fitting	Precipitation	DONE	2011-07-06 15:03:33	27 m 47 s	ccsm	Metadata Results	Publish D	Delete
5831	globeclim_oct	Model Fitting	Precipitation	DONE	2011-07-06 14:52:50	24 m 0 s	ccsm	Metadata Results	Publish D	Delete
5829	globeclim_sep	Model Fitting	Precipitation	DONE	2011-07-06 14:50:20	23 m 37 s	ccsm	Metadata Results	Publish D	Delete

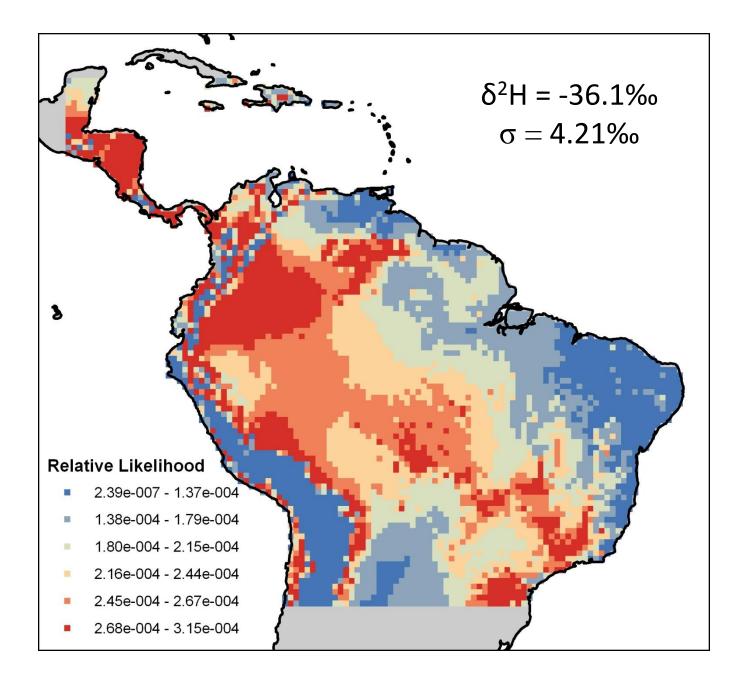
Logout

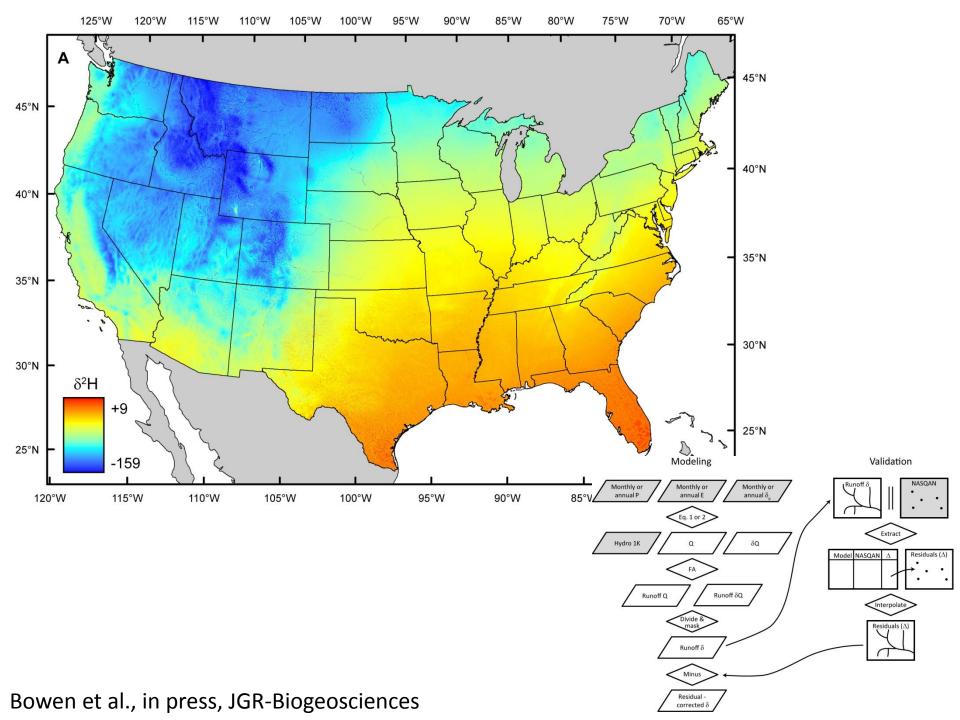
22 7-Zip File Manager					_ 🗆 ×
File Edit View Favorites To	ols Help				
Add Extract Test		<mark>ដ</mark> Info			
🤣 🛅 C:\DOCUME~1\gjbower	\LOCALS~1\Temp\gjt	oowen_7300.tar.gz\gj	ibowen_7300.tar\73(/00	-
Name	Size	Packed Size	Modified	User	Group
7300.xml	986	1 024	2011-09-24 10:58	c4e4user	tgusers
🗐 assignment.txt	8 569 892	8 570 368	2011-09-24 10:57	c4e4user	tgusers
🕑 likekrig.asc	75 525 901	75 526 144	2011-09-24 10:58	c4e4user	tgusers
🔜 likekrig, tiff	37 368 396	37 368 832	2011-09-24 10:58	c4e4user	tgusers
🔤 likekrig.vrt	2 249	2 560	2011-09-24 10:58	c4e4user	tgusers
🕑 likereg.asc	75 514 134	75 514 368	2011-09-24 10:57	c4e4user	tgusers
🔤 likereg.tiff	37 368 396	37 368 832	2011-09-24 10:58	c4e4user	tgusers
🖬 likereg.vrt	2 245	2 560	2011-09-24 10:59	c4e4user	tgusers
📼 metadata.props	87	512	2011-09-24 10:56	c4e4user	tgusers
🚾 metadata.×ml	1 608	2 048	2011-09-24 10:56	c4e4user	tgusers
•					ŀ
0 object(s) selected					

Sharing


- IsoMAP lets you publish your work, making it:
 - Visible to others
 - Downloadable by others
 - Usable by others
- Current mechanism primitive
 - All-or-none
 - Local only
- Long-term vision includes groups, external discovery

Hierarchical Analysis


- IsoMAP is designed to let you build one analysis on top of another
 - Organize your analysis workflow as modular steps
 - Develop derived isoscapes and complex analyses using consistent, traceable methods
 - Store and document intermediate data products
 - Multiple entry points along the analysis workflow


Precipitation Modeling Workflow

Hierarchical Analysis

- Geospatial assignment
 - Uses IsoMAP precipitation isoscapes as input
 - Basic version prototyped
 - Production-ready within 1-2 weeks
- Leaf water models
 - Uses IsoMAP precipitation isoscapes as input
 - Code ready, implementation to be started this fall
 - Anticipated release spring 2012

IsoMAP User Experience

- Design targets flexibility, accessibility, modularity
- That said, we've focused 1st on content, and quirks remain
 - IE compatibility
 - Shorthand notation
 - Inefficiency with respect to user input
 - Incomplete documentation
 - Bugs

IsoMAP User Experience

- We are working on these issues, and hopefully will accelerate our progress as content roll-out is completed
- Useful resources:
 - Documents (quick guide, statistics white paper, systems design paper...see flash drive)
 - Video tutorials (introductory video available now, more to follow)
 - Us (isomap@purdue.edu)

IsoMAP 2.0?

- We are seeking funding to extend on our work
- 3 major emphases
 - New analysis and modeling tools
 - Support user-supplied data
 - Link to distributed data resources
- The ultimate goal is to serve a broad research and education community by providing end-to-end data management and analysis tools
- To do this, we need your perspective, your input, and your vision